Implications of Geometry and the Theorem of Gauss on Newtonian Gravitational Systems and a Caveat Regarding Poisson’s Equation

نویسندگان

  • Anne M. Hofmeister
  • Robert E. Criss
چکیده

Galactic mass consistent with luminous mass is obtained by fitting rotation curves (RC = tangential velocities vs. equatorial radius r) using Newtonian force models, or can be unambiguously calculated from RC data using a model based on spin. In contrast, mass exceeding luminous mass is obtained from multi-parameter fits using potentials associated with test particles orbiting in a disk around a central mass. To understand this disparity, we explore the premises of these mainstream disk potential models utilizing the theorem of Gauss, thermodynamic concepts of Gibbs, the findings of Newton and Maclaurin, and well-established techniques and results from analytical mathematics. Mainstream models assume that galactic density in the axial (z) and r directions varies independently: we show that this is untrue for self-gravitating objects. Mathematics and thermodynamic principles each show that modifying Poisson’s equation by summing densities is in error. Neither do mainstream models differentiate between interior and exterior potentials, which is required by potential theory and has been recognized in seminal astronomical literature. The theorem of Gauss shows that: (1) density in Poisson’s equation must be averaged over the interior volume; (2) logarithmic gravitational potentials implicitly assume that mass forms a long, line source along the z axis, unlike any astronomical object; and (3) gravitational stability for three-dimensional shapes is limited to oblate spheroids or extremely tall cylinders, whereas other shapes are prone to collapse. Our findings suggest a mechanism for the formation of the flattened Solar System and of spiral galaxies from gas clouds. The theorem of Gauss offers many advantages over Poisson’s equation in analyzing astronomical problems because mass, not density, is the key parameter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON AN EXTENSION OF A QUADRATIC TRANSFORMATION FORMULA DUE TO GAUSS

The aim of this research note is to prove the following new transformation formula begin{equation*} (1-x)^{-2a},_{3}F_{2}left[begin{array}{ccccc} a, & a+frac{1}{2}, & d+1 & & \ & & & ; & -frac{4x}{(1-x)^{2}} \ & c+1, & d & & end{array}right] \ =,_{4}F_{3}left[begin{array}{cccccc} 2a, & 2a-c, & a-A+1, & a+A+1 & & \ & & & & ; & -x \ & c+1, & a-A, & a+A & & end{array} right], end{equation*} wher...

متن کامل

A simple model for accretion disks in the post-Newtonian approximation

p { margin-bottom: 0.1in; direction: ltr; line-height: 120%; text-align: left; }a:link { } In this paper, the evolution of accretion disks in the post-Newtonian limit has been investigated. These disks are formed around gravitational compact objects such as black holes, neutron stars, or white dwarfs. Although most analytical researches have been conducted in this context in the framework o...

متن کامل

Study of Solar Magnetic and Gravitational Energies Through the Virial Theorem

Virial theorem is important for understanding stellar structures. It produces an interesting connection between magnetic and gravitational energies. Using the general form of the virial theorem including the magnetic field (toroidal magnetic field), we may explain the solar dynamo model in relation to variations of the magnetic and gravitational energies. We emphasize the role of the gravitatio...

متن کامل

Gravitational softening as a smoothing operation

In self-consistent N -body simulations of collisionless systems, gravitational interactions are modified on small scales to remove singularities and simplify the task of numerically integrating the equations of motion. This ‘gravitational softening’ is sometimes presented as an ad-hoc departure from Newtonian gravity. However, softening can also be described as a smoothing operation applied to ...

متن کامل

1 Linear Equation Systems in the Numerical So

1 Linear Equation Systems in the Numerical Solution of PDE’s 3 1.1 Examples of PDE’s . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Weak Formulation of Poisson’s Equation . . . . . . . . . . . . 6 1.3 Finite-Difference-Discretization of Poisson’s Equation . . . . . 7 1.4 FD Discretization for Convection-Diffusion . . . . . . . . . . 8 1.5 Irreducible and Diagonal Dominant Matrices . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017